Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

The monohydrates of the four polar dipeptides L-seryl-t-asparagine, l-seryl-t-tyrosine, l-tryptophanyl-l-serine and l-tyrosyl-L-tryptophan

Carl Henrik Görbitz* and Lars Male Hartviksen

Department of Chemistry, University of Oslo, PO Box 1033 Blindern, N-0315 Oslo, Norway
Correspondence e-mail: c.h.gorbitz@kjemi.uio.no
Received 3 December 2007
Accepted 11 February 2008
Online 23 February 2008
The crystal structures of the four dipeptides L-seryl-L-asparagine monohydrate, $\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{5} \cdot \mathrm{H}_{2} \mathrm{O}$, L-seryl-L-tyrosine monohydrate, $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{5} \cdot \mathrm{H}_{2} \mathrm{O}$, L-tryptophanyl-L-serine monohydrate, $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$, and L-tyrosyl-L-tryptophan monohydrate, $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$, are dominated by extensive hy-drogen-bonding networks that include cocrystallized solvent water molecules. Side-chain conformations are discussed on the basis of previous observations in dipeptides. These four dipeptide structures greatly expand our knowledge on dipeptides incorporating polar residues such as serine, asparagine, threonine, tyrosine and tryptophan.

Figure 1

The molecular structures of SN (top left), SY (top right), WS (bottom left) and YW (bottom right). Displacement ellipsoids are shown at the 50\% probability level and H atoms are shown as spheres of arbitrary size.

organic compounds

The side-chain conformations for the title compounds were compared with those of related dipeptides in the Cambridge Structural Database (CSD; Version 5.29 of November 2007; Allen 2002). It is noted that the side chains of N-terminal Ser residues in the CSD are always in a gauche- orientation (the gauche+/trans/gauche - distribution is 0:0:5), while C-terminal Ser on the other hand displays a 7:5:1 distribution. An opposite trend is found for Trp, with distributions of 3:0:0 and 1:0:5 for N - and C -terminal residues, respectively. Tyr has the same preference as Trp for gauche+ at the N -terminus (5:2:1), but uniquely has trans as the most favoured C-terminal orienta-

Figure 2
The crystal packing arrangement of SN viewed approximately along the a axis, showing the hydrophobic parts of the Ser and Asn side chains (in yellow in the electronic version of the paper). In Figs. 2, 3, 4 and 6, H atoms not involved in the motifs shown have been omitted for clarity, while short hydrogen bonds are indicated by dashed lines.

Figure 3
The crystal packing arrangement of SY viewed approximately along the c axis, with hydrophobic parts of the Ser and Tyr side chains shown lighter (in yellow in the electronic version of the paper).
tion (1:3:1). There are only two other dipeptides with a Cterminal Asn residue in the CSD, one each in a gauche+ and a gauche - orientation. The side-chain conformations found for the four title dipeptides (Tables 1, 3, 5 and 7) agree with the CSD statistics; only for the Tyr residue of SY do we find a conformation (gauche+) that is not also the most frequently observed among dipeptides in the CSD (trans).

It is noteworthy that all four polar dipeptides have been obtained as hydrates. This observation is of particular interest for WS and YW, as all seven dipeptides with a Trp residue in the CSD are also hydrates, indicating a very high propensity for cocrystallization with water molecules for this particular residue. In contrast, SN is the first Ser-Xaa (Xaa is any amino acid) dipeptide to crystallize as a hydrate.

Among the four dipeptides studied, SN has the smallest hydrophobic units in the side chains, which generate inconspicuous hydrophobic columns along the short ($4.75 \AA$) a axis (Fig. 2). Accordingly, the hydrogen-bonding network is threedimensional, and as in all N-terminal Ser-residue dipeptide crystal structures, the hydroxy H atom hydrogen bonds to a carboxylate acceptor (Table 2). This group also accepts two of the amine H atoms, but the third amino H atom, which is usually donated to the Ser hydroxy group, is instead accepted by the cocrystallized water molecule that acts as a bridge between the two groups.

Unlike SN, the crystal packing of SY (Fig. 3) is clearly divided into layers. There is, however, only one head-to-tail chain involving the charged N - and C-terminal groups (Table 4). The remaining two amine H atoms are accepted by the hydroxy groups of the Ser and Tyr side chains. Adding to the three-dimensional hydrogen-bonding pattern, the hydroxy groups also act as donors and span the main-chain layers by interacting with the carboxylate groups in a direct fashion for the Tyr OH group and in an indirect fashion, using the cocrystallized water as a bridging molecule, for the Ser OH group sitting on a shorter side chain. The extra OH group of Tyr compared with Phe means that SY has a completely

Figure 4
The crystal packing arrangement of WS viewed along the a axis.
different structure from Ser-Phe (Helle et al., 2004). Glu-Glu (Eggleston \& Hodgson, 1982), on the other hand, shows some of the same traits, with the N-terminal Glu replacing the Ser residue as well as the cocrystallized water molecule in SY.

The structure of WS adds to a series of structures of dipeptides with a C-terminal Ser residue studied previously, including Gly-Ser (Görbitz, 1999), Leu-Ser (Görbitz et al., 2005), Val-Ser trihydrate (Johansen et al., 2005), Val-Ser trifluoroethanol solvate (Görbitz, 2005), Ile-Ser hydrate, MetSer hydrate and Phe-Ser (Görbitz et al., 2006), Ala-Ser hydrate (Jones et al., 1978), Arg-Ser acetate hydrate (Verda-

Figure 5
A structural detail showing amino $-\pi \mathrm{N}-\mathrm{H} \cdots \mathrm{C}$ interactions in WS, with $\mathrm{H} \cdots \mathrm{C}$ distances in \AA.
guer et al., 1991), and His-Ser in complex with Gly-Glu (Suresh \& Vijayan, 1985). In this group, Ile-Ser and Met-Ser have rather similar structures, while all other compounds have individually unique crystal packing arrangements. This is also true for WS, shown in Fig. 4, which, as expected from a dipeptide with large hydrophobic entities, is clearly divided into layers. The hydrogen-bonding pattern (Table 6) is nevertheless completely different even from that of its presumably closest relative Phe-Ser (Görbitz et al., 2006). The most unusual feature is the amine H atom that is not involved in a strong hydrogen bond to an O-atom acceptor, but instead is squeezed in between two Trp side chains where it acts as a donor in weak inter- and intramolecular interactions with Catom acceptors (Desiraju \& Steiner, 1999; Fig. 5).

The structure of YW (Fig. 6) has a 'Big Mac' construction, with two different types of hydrophobic layers, one generated from Tyr side chains and one from Trp side chains, separated by the same type of hydrophilic layers constituted by the peptide main chains. The same pattern was found for the related compounds Tyr-Val (Ramakrishnan et al., 1984), TyrLeu (Ramakrishnan \& Viswamitra, 1988) and Tyr-Phe (Murali \& Subramanian, 1987). It follows that the $\mathrm{N}^{\varepsilon} \mathrm{H}$ donor of the $\operatorname{Tr} p$ side chain is involved only in a comparatively weak interaction, with the C atom (C14) of a neighbouring Trp side chain as the acceptor (Table 8). The hydrogen-bonding pattern of this group of dipeptides is furthermore interesting in that, as for WS, one of the amine H atoms does not participate in a strong $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ interaction. Instead, it is sandwiched between two aromatic rings, where it is involved in weaker inter- and intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{C}$ contacts (Fig. 7). The complete absence of direct head-to-tail interactions between

Figure 6
The crystal packing arrangement viewed along the a axis for YW (top) and Tyr-Leu (Ramakrishnan \& Viswamitra, 1988) (bottom).

Figure 7
A structural detail showing amino $-\pi \mathrm{N}-\mathrm{H} \cdots \mathrm{C}$ interactions in YW, with $\mathrm{H} \cdots \mathrm{C}$ distances in \AA.
the charged N - and C-terminal groups in YW is a very rare phenomenon for dipeptide structures.

In summary, all four dipeptides display extensive hydrogenbonding networks, but the gradual increase in the size of hydrophobic units in the side chains from SN through SY and WS to YW shifts the hydrophobic aggregation pattern from columns to layers and the dimensionality of the hydrogenbonding pattern from three- to two-dimensional when only strong $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ interactions are considered. The presence of a large number of hydrogen-bonding donors and acceptors, including those present in cocrystallized water molecules, makes it possible for polar dipeptides to fulfil their hydrogen-bonding requirements while retaining peptide main chains and side chains in unconstrained conformations, but in both dipeptides with a Trp residue, WS and YW, unusual amino $-\pi \mathrm{N}-\mathrm{H} \cdots \mathrm{C}$ interactions are observed.

Experimental

The title compounds were obtained from Bachem. Crystals were obtained by slow diffusion of acetonitrile into $30 \mu \mathrm{l}$ of an aqueous solution containing about $0.2-2.0 \mathrm{mg}$ of the peptide depending on the solubility.

Dipeptide SN

Crystal data

$\begin{array}{ll}\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{5} \cdot \mathrm{H}_{2} \mathrm{O} & \gamma=104.957(1)^{\circ} \\ M_{r}=237.22 & V=263.87(1) \AA^{3} \\ \text { Triclinic, } P 1 & Z=1 \\ a=4.7547(1) \AA & \text { Mo } \AA \alpha \text { radiation } \\ b=7.5121(2) \AA & \mu=0.13 \mathrm{~mm}^{-1} \\ c=8.5626(2) \AA & T=105(2) \mathrm{K} \\ \alpha=115.691(1)^{\circ} & 0.30 \times 0.25 \times 0.20 \mathrm{~mm}\end{array}$
$\beta=90.266(1)^{\circ}$
Data collection
Siemens SMART CCD
diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.838, T_{\text {max }}=0.974$

2522 measured reflections
1289 independent reflections
1281 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.017$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025$
$w R\left(F^{2}\right)=0.067$
$S=1.09$
1289 reflections
190 parameters

3 restraints
Only H -atom coordinates refined
$\Delta \rho_{\text {max }}=0.29 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.21 \mathrm{e}^{-3}$

Table 1
Selected torsion angles $\left({ }^{\circ}\right)$ for SN.

$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 3-\mathrm{N} 2$	$124.40(13)$	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 1$	$-57.08(15)$
$\mathrm{C} 1-\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 4$	$-172.27(12)$	$\mathrm{N} 2-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-169.42(11)$
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 4-\mathrm{C} 7$	$-153.03(13)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{O} 3$	$54.70(19)$
$\mathrm{N} 2-\mathrm{C} 4-\mathrm{C} 7-\mathrm{O} 4$	$-7.36(19)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{N} 3$	$-129.80(14)$

Table 2
Hydrogen-bond geometry ($\AA,^{\circ}$) for SN.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N1-H1 . ${ }^{\text {O }}$ 1 W	0.88 (3)	1.88 (3)	2.7446 (18)	171 (2)
$\mathrm{N} 1-\mathrm{H} 2 \cdots \mathrm{O} 5^{\mathrm{i}}$	0.91 (3)	1.92 (3)	2.7712 (16)	156 (2)
$\mathrm{N} 1-\mathrm{H} 3 \cdots \mathrm{O} 5^{\text {ii }}$	0.81 (3)	2.03 (3)	2.8037 (17)	169 (2)
$\mathrm{N} 2-\mathrm{H} 4 \cdots \mathrm{O} 2^{\text {iii }}$	0.86 (2)	2.12 (2)	2.9349 (16)	156 (2)
$\mathrm{O} 1-\mathrm{H} 5 \cdots \mathrm{O} 4^{\text {ii }}$	0.81 (3)	1.82 (3)	2.6418 (16)	174 (3)
$\mathrm{C} 1-\mathrm{H} 11 \cdots \mathrm{O} 2^{\text {iii }}$	0.98 (2)	2.45 (2)	3.2908 (18)	144.5 (18)
$\mathrm{N} 3-\mathrm{H} 6 \cdots \mathrm{O} 4^{\text {iv }}$	0.82 (3)	2.17 (3)	2.9784 (18)	165 (3)
$\mathrm{N} 3-\mathrm{H} 7 \cdots \mathrm{O} 3^{\text {iii }}$	0.86 (2)	2.08 (3)	2.9014 (19)	160 (3)
$\mathrm{C} 5-\mathrm{H} 52 \cdots \mathrm{O} 3^{\text {iii }}$	0.98 (2)	2.44 (2)	3.2899 (19)	144.2 (19)
$\mathrm{O} 1 W-\mathrm{H} 1 W \cdots \mathrm{O} 1^{\text {iv }}$	0.88 (4)	1.90 (4)	2.7750 (21)	173 (3)
$\mathrm{O} 1 W-\mathrm{H} 2 W \cdots \mathrm{O}^{\text {v }}$	0.78 (4)	2.31 (4)	3.0814 (20)	165 (3)

Symmetry codes: (i) $x, y+1, z+1$; (ii) $x+1, y+1, z+1$; (iii) $x-1, y, z$; (iv) $x, y-1, z$; (v) $x-1, y-1, z$.

Dipeptide SY

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{5} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=286.28$
Orthorhombic, $P 2_{1} 2_{1} 2$
$a=15.3480$ (9) \AA
$b=17.8805$ (11) \AA
$c=4.7728$ (3) \AA

Data collection

Siemens SMART CCD
diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.814, T_{\text {max }}=0.976$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
H atoms treated by a mixture of independent and constrained
refinement
$\Delta \rho_{\text {max }}=0.24$ e \AA^{-3}
$S=1.14$
$\Delta \rho_{\min }=-0.24 \mathrm{e}^{-3}$

Table 3
Selected torsion angles (${ }^{\circ}$) for SY.

$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 3-\mathrm{N} 2$	$171.4(2)$	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 1$	$-68.9(3)$
$\mathrm{C} 1-\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 4$	$169.2(2)$	$\mathrm{N} 2-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$62.4(3)$
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 4-\mathrm{C} 12$	$-148.6(2)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$-88.7(3)$
$\mathrm{N} 2-\mathrm{C} 4-\mathrm{C} 12-\mathrm{O} 4$	$6.1(3)$		

Table 4
Hydrogen-bond geometry ($\AA,^{\circ}$) for SY.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 1^{\mathrm{i}}$	0.99 (3)	1.96 (3)	2.936 (3)	171 (3)
$\mathrm{N} 1-\mathrm{H} 2 \cdots \mathrm{O} 5^{\text {ii }}$	0.99 (3)	1.96 (3)	2.903 (3)	158 (3)
$\mathrm{N} 1-\mathrm{H} 3 \cdots \mathrm{O}{ }^{\text {iii }}$	0.95 (3)	1.83 (3)	2.721 (3)	155 (3)
$\mathrm{O} 1-\mathrm{H} 4 \cdots \mathrm{O} 1 W^{\text {iv }}$	0.95 (3)	1.76 (3)	2.679 (3)	163 (3)
$\mathrm{N} 2-\mathrm{H} 5 \cdots \mathrm{O} 2^{\mathrm{v}}$	0.82 (3)	2.34 (3)	3.092 (3)	153 (3)
$\mathrm{O} 3-\mathrm{H} 6 \cdots \mathrm{O} 4^{\text {vi }}$	0.87 (4)	1.74 (4)	2.612 (3)	173 (4)
$\mathrm{C} 1-\mathrm{H} 11 \cdots \mathrm{O} 2^{\text {v }}$	1.00	2.37	3.004 (3)	121
$\mathrm{O} 1 W-\mathrm{H} 1 W \cdots \mathrm{O}^{\text {i }}$	0.846 (17)	2.07 (2)	2.904 (3)	167 (4)
$\mathrm{O} 1 W-\mathrm{H} 2 W \cdots \mathrm{O}$	0.846 (17)	1.940 (18)	2.782 (3)	164 (3)

Symmetry codes: (i) $x, y, z+1$; (ii) $-x+\frac{1}{2}, y-\frac{1}{2},-z+1$; (iii) $-x+1,-y+1, z+1$; (iv)
$x-\frac{1}{2},-y+\frac{3}{2},-z+1$; (v) $x, y, z-1$; (vi) $x+\frac{1}{2},-y+\frac{3}{2},-z$.

Dipeptide WS

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=309.32$
Monoclinic, $P 2_{1}$
$a=6.5613$ (5) A
$b=9.1474$ (7) \AA
$c=12.5052$ (9) A
$\beta=101.973$ (1) ${ }^{\circ}$

Data collection

Siemens SMART CCD
diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.893, T_{\text {max }}=0.991$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
H atoms treated by a mixture of independent and constrained refinement
$w R\left(F^{2}\right)=0.091$
$S=1.04$
$\Delta \rho_{\max }=0.21 \mathrm{e}_{\AA^{-3}}$
1827 reflections
225 parameters
$\Delta \rho_{\min }=-0.25 \mathrm{e}^{-3}$

1 restraint

Table 5
Selected torsion angles (${ }^{\circ}$) for WS.

N1-C1-C11-N3	$157.96(19)$	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$61.6(3)$
$\mathrm{C} 1-\mathrm{C} 11-\mathrm{N} 3-\mathrm{C} 12$	$-178.97(19)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-95.8(3)$
$\mathrm{C} 11-\mathrm{N} 3-\mathrm{C} 12-\mathrm{C} 14$	$-167.49(19)$	$\mathrm{N} 3-\mathrm{C} 12-\mathrm{C} 13-\mathrm{O} 2$	$66.3(2)$
$\mathrm{N} 3-\mathrm{C} 12-\mathrm{C} 14-\mathrm{O} 3$	$7.1(3)$		

Table 6
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$) for WS.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N1-H1 . ${ }^{\text {C3 }}$	0.90 (3)	2.64 (3)	3.012 (3)	106 (2)
$\mathrm{N} 1-\mathrm{H} 2 \cdots \mathrm{O} 3^{\text {i }}$	0.87 (3)	1.86 (3)	2.726 (3)	170 (3)
N1-H3 . OO1 W	0.94 (4)	1.88 (3)	2.762 (3)	156 (3)
$\mathrm{N} 2-\mathrm{H} 4 \cdots \mathrm{O} 1^{\text {ii }}$	0.87 (3)	2.01 (3)	2.802 (3)	151 (3)
$\mathrm{N} 3-\mathrm{H} 5 \cdots \mathrm{O} 2^{\text {iii }}$	0.84 (3)	2.16 (3)	2.956 (2)	159 (3)
$\mathrm{O} 2-\mathrm{H} 6 \cdots \mathrm{O} 1 W^{\text {iv }}$	0.91 (3)	1.87 (3)	2.756 (3)	164 (3)
$\mathrm{C} 1-\mathrm{H} 11 \cdots \mathrm{O} 2^{\text {iii }}$	1.00	2.47	3.114 (3)	122
$\mathrm{C} 1-\mathrm{H} 11 \cdots \mathrm{O} 4^{\text {iii }}$	1.00	2.46	3.403 (3)	158
C9-H91 . $\mathrm{C}^{\text {V }}$	0.95	2.71	3.537 (4)	146
$\mathrm{O} 1 W-\mathrm{H} 1 W \cdots 4^{\text {vi }}$	0.84 (4)	1.87 (4)	2.683 (2)	164 (4)
$\mathrm{O} 1 W-\mathrm{H} 2 W \cdots \mathrm{O} 3{ }^{\text {iii }}$	0.87 (4)	1.83 (4)	2.694 (2)	171 (4)

Symmetry codes: (i) $x+1, y, z$; (ii) $-x+1, y-\frac{1}{2},-z+1$; (iii) $-x, y-\frac{1}{2},-z$; (iv) $-x+1, y+\frac{1}{2},-z$; (v) $-x, y+\frac{1}{2},-z+1$; (vi) $x+1, y-1, z$.

Dipeptide YW

Crystal data
$\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=385.41$
Monoclinic, $P 2_{1}$
$a=5.7309$ (3) A
$b=8.1960$ (4) \AA
$c=19.0952(9) \AA$
$\beta=91.694(1)^{\circ}$

Data collection
Siemens SMART CCD diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.882, T_{\text {max }}=0.986$
$V=896.52(8) \AA^{3}$
$Z=2$
Mo $K \alpha$ radiation
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=105$ (2) K
$0.36 \times 0.20 \times 0.14 \mathrm{~mm}$

5858 measured reflections 2245 independent reflections 2089 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.045$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.080$
$S=1.02$
2245 reflections
284 parameters
4 restraints

> H atoms treated by a mixture of independent and constrained refinement
> $\Delta \rho_{\max }=0.22$ e \AA^{-3}
> $\Delta \rho_{\min }=-0.17$ e $^{-3}$

Table 7
Selected torsion angles $\left({ }^{\circ}\right)$ for YW.

$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 9-\mathrm{N} 2$	$161.60(15)$	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$47.2(2)$
$\mathrm{C} 1-\mathrm{C} 9-\mathrm{N} 2-\mathrm{C} 10$	$177.26(15)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$78.8(2)$
$\mathrm{C} 9-\mathrm{N} 2-\mathrm{C} 10-\mathrm{C} 20$	$-67.6(2)$	$\mathrm{N} 2-\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12$	$-64.5(2)$
$\mathrm{N} 2-\mathrm{C} 10-\mathrm{C} 20-\mathrm{O} 3$	$147.54(16)$	$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	$58.1(3)$

Table 8
Hydrogen-bond geometry ($\AA{ }^{\circ},{ }^{\circ}$) for YW.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	H $\cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 1^{\mathrm{i}}$	0.95 (3)	2.16 (3)	2.915 (2)	137 (2)
$\mathrm{N} 1-\mathrm{H} 2 \cdots \mathrm{O} 1 W^{\text {ii }}$	0.99 (3)	1.63 (3)	2.611 (2)	170 (2)
$\mathrm{N} 1-\mathrm{H} 3 \cdots \mathrm{C} 7^{\text {iii }}$	0.87 (3)	2.66 (3)	3.298 (3)	131 (2)
O1-H4. . $\mathrm{O}^{\text {i }}$	0.86 (3)	1.86 (3)	2.653 (2)	153 (3)
$\mathrm{N} 2-\mathrm{H} 5 \cdots \mathrm{O}^{\text {iv }}$	0.87 (3)	1.96 (3)	2.825 (2)	170 (2)
$\mathrm{N} 3-\mathrm{H} 6 \cdots \mathrm{C} 14^{\text {v }}$	0.88 (3)	2.65 (3)	3.419 (3)	147 (2)
$\mathrm{O} 1 W-\mathrm{H} 1 W \cdots \mathrm{O} 4$	0.850 (18)	1.877 (17)	2.725 (2)	177 (3)
$\mathrm{O} 1 W-\mathrm{H} 2 W \cdots 3^{\text {iv }}$	0.857 (18)	1.805 (19)	2.653 (2)	170 (3)

Symmetry codes: (i) $-x+1, y+\frac{1}{2},-z+1$; (ii) $x, y+1, z$; (iii) $-x, y+\frac{1}{2},-z+1$; (iv)
$x-1, y, z ;$ (v) $-x, y+\frac{1}{2},-z+2$.

Positional parameters were refined for all H atoms of SN . For the three other structures, positional parameters were refined only for H atoms involved in short hydrogen bonds. Other H atoms were positioned with idealized geometry and fixed $\mathrm{C}-\mathrm{H}$ distances in the range $0.95-1.00 \AA . U_{\text {iso }}(\mathrm{H})$ values were refined for the water molecule in WS; for all other H atoms, $U_{\text {iso }}(\mathrm{H})$ values were set at $1.2 U_{\text {eq }}$ of the carrier atom, or $1.5 U_{\text {eq }}$ for the amine and hydroxy groups, and for the cocrystallized water molecules. In the absence of significant anomalous scattering effects, Friedel pairs were merged.

For all compounds, data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINTPlus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

organic compounds

The purchase of the Siemens SMART CCD diffractometer was made possible through support from the Research Council of Norway (NFR).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GG3137). Services for accessing these data are described at the back of the journal.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Bruker (1998). SMART. Version 5.054. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2001). SAINT-Plus. Version 6.22. Bruker AXS Inc., Madison, Wisconsin, USA.
Cotrait, M., Bideau, J.-P., Beurskens, G., Bosman, W. P. \& Beurskens, P. T. (1984). Acta Cryst. C40, 1412-1416.

Desiraju, G. \& Steiner, T. (1999). The Weak Hydrogen Bond: Applications to Structural Chemistry and Biology. New York: Oxford University Press.

Eggleston, D. S. \& Hodgson, D. J. (1982). Acta Cryst. B38, 1216-1220
Görbitz, C. H. (1999). Acta Cryst. B55, 1090-1098.
Görbitz, C. H. (2005). CrystEngComm, 7, 670-673.
Görbitz, C. H., Bruvoll, M., Dizdarevic, S., Fimland, N., Hafizovic, J., Kalfjøs, H. T., Krivokapic, A. \& Vestli, K. (2006). Acta Cryst. C62, o22-o25.

Görbitz, C. H., Nilsen, M., Szeto, K. \& Tangen, L. W. (2005). Chem. Commun. pp. 4288-4290.
Helle, I. H., Løkken, C. V., Görbitz, C. H. \& Dalhus, B. (2004). Acta Cryst. C60, o771-o772.
Johansen, A., Midtkandal, R., Roggen, H. \& Görbitz, C. H. (2005). Acta Cryst. C61, o198-o200.
Jones, P. G., Falvello, L. \& Kennard, O. (1978). Acta Cryst. B34, 2379-2381.
Murali, M. \& Subramanian, E. (1987). Int. J. Pept. Protein Res. 29, 187-192.
Ramakrishnan, B., Seshadri, T. P. \& Viswamitra, M. A. (1984). Acta Cryst. C40, 1248-1250.
Ramakrishnan, B. \& Viswamitra, M. A. (1988). Acta Cryst. C44, 19571959.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Suresh, C. G. \& Vijayan, M. (1985). Int. J. Pept. Protein Res. 26, 329-336.
Verdaguer, N., Fita, I. \& Subirana, J. A. (1991). Bull. Soc. Cat. Cien. 12, 497505.

